Structural Connections between a Forcing Class and Its Modal Logic
نویسندگان
چکیده
Every definable forcing class Γ gives rise to a corresponding forcing modality, for which Γ φ means that φ is true in all Γ extensions, and the valid principles of Γ forcing are the modal assertions that are valid for this forcing interpretation. For example, [9] shows that if ZFC is consistent, then the ZFC-provably valid principles of the class of all forcing are precisely the assertions of the modal theory S4.2. In this article, we prove similarly that the provably valid principles of collapse forcing, Cohen forcing and other classes are in each case exactly S4.3; the provably valid principles of c.c.c. forcing, proper forcing, and others are each contained within S4.3 and do not contain S4.2; the provably valid principles of countably closed forcing, CH-preserving forcing and others are each exactly S4.2; and the provably valid principles of ω1-preserving forcing are contained within S4.tBA. All these results arise from general structural connections we have identified between a forcing class and the modal logic of forcing to which it gives rise.
منابع مشابه
Fatal Heyting Algebras and Forcing Persistent Sentences
Hamkins and Löwe proved that the modal logic of forcing is S4.2. In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra HZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.
متن کاملThe Modal Logic of Generic Multiverses
In this thesis, we investigate the modal logic of forcing and the modal logic of grounds of generic multiverses. Hamkins and Löwe showed that the ZFC-provable modal principles of forcing, as well as of grounds, are exactly the theorems of the modal logic S4.2 (see [16],[17]). We prove that the modal logic of forcing of any generic multiverse is also exactly S4.2 by showing that any model of ZFC...
متن کاملUnified Correspondence as a Proof-Theoretic Tool
The present paper aims at establishing formal connections between correspondence phenomena, well known from the area of modal logic, and the theory of display calculi, originated by Belnap. These connections have been seminally observed and exploited by Marcus Kracht, in the context of his characterization of the modal axioms (which he calls primitive formulas) which can be effectively transfor...
متن کاملThe Modal Logic of Forcing
A set theoretical assertion ψ is forceable or possible, written ♦ψ, if ψ holds in some forcing extension, and necessary, written ψ, if ψ holds in all forcing extensions. In this forcing interpretation of modal logic, we establish that if ZFC is consistent, then the ZFC-provable principles of forcing are exactly those in the modal theory S4.2.
متن کاملA General Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Fragments
This paper presents a general method for proving termination of tableaux-based procedures for modal-type logics and related firstorder fragments. The method is based on connections between filtration arguments and a general blocking technique. The method provides a general framework for developing tableau-based decision procedures for a large class of logics. In particular, the method can be ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012